3,760 research outputs found

    Four Zero Texture Fermion Mass Matrices in SO(10) GUT

    Full text link
    We attempt the integration of the phenomenologically successful four zero texture of fermion mass matrices with the renormalizable SO(10) GUT. The resulting scenario is found to be highly predictive. Firstly, we examine the phenomenological implications of a class of the lepton mass matrices with parallel texture structures and obtain interesting constraints on the parameters of the charged lepton and the neutrino mass matrices. We combine these phenomenological constraints with the constraints obtained from SO(10) GUT to reduce the number of the free parameters and to further constrain the allowed ranges of the free parameters. The solar/atmospheric mixing angles obtained in this analysis are in fairly good agreement with the data.Comment: 14 pages, 3 figures, 1 tabl

    The consequences of SU(3) colorsingletness, Polyakov Loop and Z(3) symmetry on a quark-gluon gas

    Full text link
    Based on quantum statistical mechanics we show that the SU(3)SU(3) color singlet ensemble of a quark-gluon gas exhibits a Z(3)Z(3) symmetry through the normaized character in fundamental representation and also becomes equivalent, within a stationary point approximation, to the ensemble given by Polyakov Loop. Also Polyakov Loop gauge potential is obtained by considering spatial gluons along with the invariant Haar measure at each space point. The probability of the normalized character in SU(3)SU(3) vis-a-vis Polyakov Loop is found to be maximum at a particular value exhibiting a strong color correlation. This clearly indicates a transition from a color correlated to uncorrelated phase or vise-versa. When quarks are included to the gauge fields, a metastable state appears in the temperature range 145T(MeV)170145\le T({\rm{MeV}}) \le 170 due to the explicit Z(3)Z(3) symmetry breaking in the quark-gluon system. Beyond T170T\ge 170 MeV the metastable state disappears and stable domains appear. At low temperature a dynamical recombination of ionized Z(3)Z(3) color charges to a color singlet Z(3)Z(3) confined phase is evident along with a confining background that originates due to circulation of two virtual spatial gluons but with conjugate Z(3)Z(3) phases in a closed loop. We also discuss other possible consequences of the center domains in the color deconfined phase at high temperature.Comment: Version published in J. Phys.

    Delicate f(R) gravity models with disappearing cosmological constant and observational constraints on the model parameters

    Full text link
    We study the f(R)f(R) theory of gravity using metric approach. In particular we investigate the recently proposed model by Hu-Sawicki, Appleby - Battye and Starobinsky. In this model, the cosmological constant is zero in flat space time. The model passes both the Solar system and the laboratory tests. But the model parameters need to be fine tuned to avoid the finite time singularity recently pointed in the literature. We check the concordance of this model with the H(z)H(z) and baryon acoustic oscillation data. We find that the model resembles the Λ\LambdaCDM at high redshift. However, for some parameter values there are variations in the expansion history of the universe at low redshift.Comment: 16 pages and 9 figures, typos corrected, few references and minor clarifications added, revised version to appera in PR

    Shape variation in epitaxial microstructures of gold silicide grown on br-passivated Si(1 1 1) surfaces

    Get PDF
    Kinetic Monte Carlo simulations for growth on substrates of three-fold symmetry predict the growth of islands of various shapes depending on the growth temperature [Phys. Rev. Lett. 71 (1993) 2967]. On Br-Si(1 1 1) substrates growth of epitaxial gold silicide islands of equilateral triangular and trapezoidal shapes have earlier been observed by annealing at the Au-Si eutectic temperature, 363 °C [Phys. Rev. B 51 (1995) 14330]. We carried out annealing with temperature variation within a small window--(363 ± 30) °C. This has led to island growth of additional shapes like regular hexagon, elongated hexagon, walled hexagon and dendrite. Some of the observed island shapes have not been predicted

    Origin of Magic Angular Momentum in a Quantum Dot under Strong Magnetic Field

    Full text link
    This paper investigates origin of the extra stability associated with particular values (magic numbers) of the total angular momentum of electrons in a quantum dot under strong magnetic field. The ground-state energy, distribution functions of density and angular momentum, and pair correlation function are calculated in the strong field limit by numerical diagonalization of the system containing up to seven electrons. It is shown that the composite fermion picture explains the small magic numbers well, while a simple geometrical picture does better as the magic number increases. Combination of these two pictures leads to identification of all the magic numbers. Relation of the magic-number states to the Wigner crystal and the fractional quantum Hall state is discussed.Comment: 12 pages, 9 Postscript figures, uses jpsj.st
    corecore